Skip to content

注明: 本文源码基于JDK 1.8

ThreadLocal对象可以提供线程局部变量,每个线程Thread拥有一份自己的副本变量,多个线程互不干扰。

ThreadLocal的数据结构

Thread类有一个类型为ThreadLocal.ThreadLocalMap的实例变量threadLocals,也就是说每个线程有一个自己的ThreadLocalMap

ThreadLocalMap有自己的独立实现,可以简单地将它的key视作ThreadLocalvalue为代码中放入的值(实际上key并不是ThreadLocal本身,而是它的一个弱引用)。

每个线程在往ThreadLocal里放值的时候,都会往自己的ThreadLocalMap里存,读也是以ThreadLocal作为引用,在自己的map里找对应的key,从而实现了线程隔离

ThreadLocalMap有点类似HashMap的结构,只是HashMap是由数组+链表实现的,而ThreadLocalMap中并没有链表结构。

ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get()set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

ThreadLocal 内存泄露问题是怎么导致的?

ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。

这样一来,ThreadLocalMap 中就会出现 key 为 null 的 Entry。假如我们不做任何措施的话,value 永远无法被 GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap 实现中已经考虑了这种情况,在调用 set()get()remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后最好手动调用remove()方法

如果我们的强引用不存在的话,那么 key 就会被回收,也就是会出现我们 value 没被回收,key 被回收,导致 value 永远存在,出现内存泄漏。

ThreadLocal.set()方法源码详解

ThreadLocal中的set方法很简单,主要是判断ThreadLocalMap是否存在,然后使用ThreadLocal中的set方法进行数据处理。

java
public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

主要的核心逻辑还是在ThreadLocalMap中的

ThreadLocalMap Hash 冲突

HashMap中解决冲突的方法是在数组上构造一个链表结构,冲突的数据挂载到链表上,如果链表长度超过一定数量则会转化成红黑树

ThreadLocalMap 中并没有链表结构,所以这里不能使用 HashMap 解决冲突的方式了。

如上图所示,如果我们插入一个value=27的数据,通过 hash 计算后应该落入槽位 4 中,而槽位 4 已经有了 Entry 数据。

此时就会线性向后查找,一直找到 Entrynull 的槽位才会停止查找,将当前元素放入此槽位中。当然迭代过程中还有其他的情况,比如遇到了 Entry 不为 nullkey 值相等的情况,还有 Entry 中的 key 值为 null 的情况等等都会有不同的处理,后面会一一详细讲解。

这里还画了一个Entry中的keynull的数据(Entry=2 的灰色块数据),因为key值是弱引用类型,所以会有这种数据存在。在set过程中,如果遇到了key过期的Entry数据,实际上是会进行一轮探测式清理操作的,具体操作方式后面会讲到。

ThreadLocalMap.set()详解

  • 第一种情况: 通过hash计算后的槽位对应的Entry数据为空:
    • 这里直接将数据放到该槽位即可。
  • 第二种情况: 槽位数据不为空,key值与当前ThreadLocal通过hash计算获取的key值一致:
    • 这里直接更新该槽位的数据。
  • 第三种情况: 槽位数据不为空,往后遍历过程中,在找到Entrynull的槽位之前,没有遇到key过期的Entry
    • 遍历散列数组,线性往后查找,如果找到Entrynull的槽位,则将数据放入该槽位中,或者往后遍历过程中,遇到了key 值相等的数据,直接更新即可。
  • 第四种情况: 槽位数据不为空,往后遍历过程中,在找到Entrynull的槽位之前,遇到key过期的Entry
    • 散列数组下标为 7 位置对应的Entry数据keynull,表明此数据key值已经被垃圾回收掉了,此时就会执行replaceStaleEntry()方法,该方法含义是替换过期数据的逻辑,以index=7位起点开始遍历,进行探测式数据清理工作。

什么情况下桶才是可以使用的呢?

  1. k = key 说明是替换操作,可以使用
  2. 碰到一个过期的桶,执行替换逻辑,占用过期桶
  3. 查找过程中,碰到桶中Entry=null的情况,直接使用

ThreadLocalMap扩容机制

ThreadLocalMap.set()方法的最后,如果执行完启发式清理工作后,未清理到任何数据,且当前散列数组中Entry的数量已经达到了列表的扩容阈值(len*2/3),就开始执行rehash()逻辑:

java
if (!cleanSomeSlots(i, sz) && sz >= threshold)
    rehash();

接着看下rehash()具体实现:

点击查看完整代码实现
点击查看完整代码实现
java
private void rehash() {
    expungeStaleEntries();

    if (size >= threshold - threshold / 4)
        resize();
}

private void expungeStaleEntries() {
    Entry[] tab = table;
    int len = tab.length;
    for (int j = 0; j < len; j++) {
        Entry e = tab[j];
        if (e != null && e.get() == null)
            expungeStaleEntry(j);
    }
}

:::

这里首先是会进行探测式清理工作,从table的起始位置往后清理,上面有分析清理的详细流程。清理完成之后,table中可能有一些keynullEntry数据被清理掉,所以此时通过判断size >= threshold - threshold / 4 也就是size >= threshold * 3/4 来决定是否扩容。

我们还记得上面进行rehash()的阈值是size >= threshold,所以当面试官套路我们ThreadLocalMap扩容机制的时候 我们一定要说清楚这两个步骤:

接着看看具体的resize()方法,

扩容后的tab的大小为oldLen * 2,然后遍历老的散列表,重新计算hash位置,然后放到新的tab数组中,如果出现hash冲突则往后寻找最近的entrynull的槽位,遍历完成之后,oldTab中所有的entry数据都已经放入到新的tab中了。重新计算tab下次扩容的阈值,具体代码如下:

点击查看完整代码实现
点击查看完整代码实现
java
private void resize() {
    Entry[] oldTab = table;
    int oldLen = oldTab.length;
    int newLen = oldLen * 2;
    Entry[] newTab = new Entry[newLen];
    int count = 0;

    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null;
            } else {
                int h = k.threadLocalHashCode & (newLen - 1);
                while (newTab[h] != null)
                    h = nextIndex(h, newLen);
                newTab[h] = e;
                count++;
            }
        }
    }

    setThreshold(newLen);
    size = count;
    table = newTab;
}

:::

ThreadLocalMap.get()详解

  • 第一种情况: 通过查找key值计算出散列表中slot位置,然后该slot位置中的Entry.key和查找的key一致,则直接返回:

  • 第二种情况: slot位置中的Entry.key和要查找的key不一致:

    • 我们以get(ThreadLocal1)为例,通过hash计算后,正确的slot位置应该是 4,而index=4的槽位已经有了数据,且key值不等于ThreadLocal1,所以需要继续往后迭代查找。
    • 在查找过程中会出发探测式数据回收操作
    • 如果找的过程中出现null值,表示当前位置的值并没有通过后继放置放在后面,返回null
    • (如果存在值,那么应该会是在不断往后寻找非空的位置放下,中途有null值就表示没有当前的值)

ThreadLocal应用场景

正在精进