Skip to content

SLI/SLO/SLA 体系设计与实践

SLI(服务级别指标)、SLO(服务级别目标)、SLA(服务级别协议)是现代SRE实践的核心框架,通过量化的方式定义、测量和管理服务质量,实现可靠性工程的科学化管理。

🎯 SLI/SLO/SLA 核心概念

三者关系和定义

yaml
sli_definition:
  concept: "Service Level Indicator"
  description: "量化的服务性能指标"
  characteristics:
    - "客观可测量"
    - "用户体验相关"
    - "业务价值导向"
    - "技术实现支撑"
  
  measurement_types:
    ratio_based:
      description: "基于比率的指标"
      formula: "good_events / total_events"
      examples:
        - "成功请求数 / 总请求数"
        - "快速响应数 / 总响应数"
        - "可用服务时间 / 总服务时间"
    
    threshold_based:
      description: "基于阈值的指标"
      examples:
        - "响应时间 < 200ms"
        - "错误率 < 0.1%"
        - "吞吐量 > 1000 RPS"
    
    distribution_based:
      description: "基于分布的指标"
      examples:
        - "95%的请求延迟 < 500ms"
        - "99.9%的可用性"
        - "P99延迟分布"
  
  common_sli_patterns:
    availability:
      definition: "服务可访问的比例"
      calculation: |
        availability = uptime / (uptime + downtime)
      
      measurement_methods:
        - "HTTP状态码检查"
        - "健康检查端点"
        - "合成事务监控"
        - "用户真实访问"
    
    latency:
      definition: "请求处理速度"
      metrics:
        - "平均响应时间"
        - "百分位数延迟 (P50, P95, P99)"
        - "端到端处理时间"
      
      measurement_points:
        - "负载均衡器"
        - "应用程序"
        - "数据库查询"
        - "外部API调用"
    
    throughput:
      definition: "系统处理能力"
      metrics:
        - "每秒请求数 (RPS)"
        - "每秒事务数 (TPS)"
        - "数据处理量"
      
      considerations:
        - "峰值处理能力"
        - "sustained负载能力"
        - "弹性扩展效果"
    
    error_rate:
      definition: "错误发生频率"
      calculation: |
        error_rate = error_requests / total_requests
      
      error_categories:
        - "4xx客户端错误"
        - "5xx服务器错误"
        - "超时错误"
        - "业务逻辑错误"
yaml
slo_definition:
  concept: "Service Level Objective"
  description: "SLI的目标值或范围"
  characteristics:
    - "基于SLI设定"
    - "可达成的目标"
    - "业务需求驱动"
    - "持续监控评估"
  
  slo_structure:
    components:
      indicator: "选择的SLI指标"
      target: "期望达到的目标值"
      measurement_window: "评估时间窗口"
      measurement_method: "计算方法"
    
    example: |
      SLO: 在30天滑动窗口内,API服务的可用性应保持在99.9%以上
      - SLI: API请求成功率
      - Target: ≥ 99.9%
      - Window: 30天滑动窗口
      - Method: 成功请求数 / 总请求数
  
  slo_types:
    availability_slo:
      examples:
        - "99.9% 可用性(每月允许43分钟故障)"
        - "99.95% 可用性(每月允许22分钟故障)"
        - "99.99% 可用性(每月允许4分钟故障)"
      
      measurement_approaches:
        uptime_based: "基于服务正常运行时间"
        request_based: "基于请求成功率"
        user_experience_based: "基于用户体验"
    
    latency_slo:
      examples:
        - "95%的请求响应时间 < 200ms"
        - "99%的请求响应时间 < 500ms"
        - "99.9%的请求响应时间 < 1s"
      
      considerations:
        - "用户体验阈值"
        - "业务场景需求"
        - "技术架构限制"
    
    throughput_slo:
      examples:
        - "支持1000 RPS的持续负载"
        - "峰值处理能力3000 RPS"
        - "99%的请求在正常吞吐量下处理"
  
  error_budget:
    concept: "错误预算"
    definition: "SLO允许的最大错误量"
    calculation: |
      error_budget = (1 - SLO_target) × total_requests
      
      例如:99.9%可用性SLO,月请求100万次
      error_budget = (1 - 0.999) × 1,000,000 = 1,000次错误
    
    budget_policies:
      preventive_actions:
        - "70%预算消耗:减缓功能发布"
        - "90%预算消耗:停止非关键部署"
        - "100%预算消耗:专注可靠性改进"
      
      budget_reset:
        - "按时间窗口重置"
        - "滑动窗口计算"
        - "事件驱动重置"
yaml
sla_definition:
  concept: "Service Level Agreement"
  description: "正式的服务承诺协议"
  characteristics:
    - "具有法律约束力"
    - "客户和提供商之间"
    - "包含补偿条款"
    - "基于SLO制定"
  
  sla_components:
    service_description:
      - "服务范围定义"
      - "功能特性说明"
      - "使用限制条件"
      - "支持时间范围"
    
    performance_commitments:
      - "可用性承诺"
      - "性能指标保证"
      - "响应时间承诺"
      - "故障恢复时间"
    
    measurement_methods:
      - "指标计算方法"
      - "测量工具和流程"
      - "数据收集标准"
      - "报告频率"
    
    remedies_and_penalties:
      - "服务中断补偿"
      - "性能未达标处理"
      - "服务积分返还"
      - "合同终止条件"
  
  sla_tiers:
    basic_tier:
      availability: "99.0%"
      support: "工作时间邮件支持"
      remedies: "服务积分 10%"
    
    standard_tier:
      availability: "99.5%"
      support: "7x24电话支持"
      remedies: "服务积分 25%"
    
    premium_tier:
      availability: "99.9%"
      support: "专属技术经理"
      remedies: "服务积分 100%"
    
    enterprise_tier:
      availability: "99.95%"
      support: "现场技术支持"
      remedies: "自定义补偿协议"

设计原则和最佳实践

yaml
sli_design_principles:
  user_centric:
    focus: "以用户体验为中心"
    guidelines:
      - "从用户角度定义指标"
      - "关注用户可感知的性能"
      - "避免过于技术化的指标"
      - "考虑不同用户群体"
    
    examples:
      good_sli:
        - "页面加载时间 < 2秒"
        - "搜索结果返回 < 500ms"
        - "视频播放成功率 > 99%"
      
      poor_sli:
        - "CPU使用率 < 80%"
        - "内存使用率 < 70%"
        - "磁盘IO < 1000 IOPS"
  
  measurable_and_actionable:
    characteristics:
      - "客观可测量"
      - "数据可获得"
      - "结果可执行"
      - "改进可验证"
    
    implementation:
      - "使用现有监控数据"
      - "设置自动化收集"
      - "确保数据准确性"
      - "建立改进机制"
  
  proportional_and_achievable:
    balance_considerations:
      - "业务需求 vs 技术能力"
      - "成本投入 vs 质量提升"
      - "用户期望 vs 现实限制"
      - "短期目标 vs 长期规划"
    
    target_setting:
      baseline_establishment: "基于历史数据"
      incremental_improvement: "渐进式提升"
      industry_benchmarking: "行业标准参考"
      business_alignment: "业务价值对齐"
yaml
slo_implementation:
  gradual_rollout:
    phases:
      phase_1_pilot:
        scope: "关键服务试点"
        duration: "2-4周"
        focus: "指标收集和基线建立"
        success_criteria: "数据收集完整性"
      
      phase_2_expansion:
        scope: "扩展到主要服务"
        duration: "1-2个月"
        focus: "SLO设定和监控"
        success_criteria: "SLO达成率"
      
      phase_3_optimization:
        scope: "全面覆盖"
        duration: "持续进行"
        focus: "持续优化和改进"
        success_criteria: "业务价值提升"
  
  stakeholder_alignment:
    product_team:
      responsibilities:
        - "业务SLO需求定义"
        - "用户体验标准制定"
        - "产品功能优先级"
      
      engagement:
        - "SLO目标协商"
        - "错误预算政策制定"
        - "功能发布决策参与"
    
    engineering_team:
      responsibilities:
        - "技术SLI实现"
        - "监控系统建设"
        - "可靠性改进"
      
      capabilities:
        - "SLI数据收集"
        - "自动化监控"
        - "故障响应处理"
    
    operations_team:
      responsibilities:
        - "SLO监控和告警"
        - "事件响应和处理"
        - "可靠性运维"
      
      processes:
        - "SLO违规处理流程"
        - "错误预算管理"
        - "持续改进机制"

📊 SLI指标体系设计

用户体验导向的SLI

yaml
web_application_sli:
  availability_sli:
    http_success_rate:
      definition: "HTTP 2xx和3xx响应的比例"
      formula: |
        availability = (
          count(http_status_code in [200-399]) / 
          count(total_http_requests)
        ) * 100
      
      measurement_query: |
        # Prometheus query
        sum(rate(http_requests_total{status=~"[23].."}[5m])) /
        sum(rate(http_requests_total[5m])) * 100
    
    synthetic_monitoring:
      definition: "合成事务成功率"
      approach: "外部主动探测"
      tools: ["Pingdom", "Datadog Synthetics", "自建探测"]
      
      test_scenarios:
        - "首页加载测试"
        - "用户登录流程"
        - "关键业务操作"
        - "API端点检查"
  
  latency_sli:
    page_load_time:
      metrics:
        - "DOMContentLoaded时间"
        - "First Contentful Paint (FCP)"
        - "Largest Contentful Paint (LCP)"
        - "Time to Interactive (TTI)"
      
      measurement: |
        # Real User Monitoring (RUM)
        performance.timing.loadEventEnd - 
        performance.timing.navigationStart
    
    api_response_time:
      percentile_based: "P95响应时间 < 200ms"
      measurement_query: |
        # Prometheus query
        histogram_quantile(0.95,
          sum(rate(http_request_duration_seconds_bucket[5m])) by (le)
        )
  
  quality_sli:
    functional_correctness:
      definition: "业务逻辑正确执行的比例"
      examples:
        - "搜索结果相关性"
        - "推荐算法准确性"
        - "数据一致性检查"
    
    user_satisfaction:
      apdex_score:
        definition: "Application Performance Index"
        formula: |
          Apdex = (Satisfied + Tolerated/2) / Total
          
          Satisfied: response_time <= T
          Tolerated: T < response_time <= 4T
          Frustrated: response_time > 4T
      
      user_feedback:
        - "用户评分"
        - "客服投诉率"
        - "用户流失率"
yaml
api_service_sli:
  rest_api_sli:
    availability:
      measurement: "HTTP状态码成功率"
      exclusions:
        - "4xx客户端错误(除429限流)"
        - "预期的维护窗口"
        - "DDoS攻击期间"
      
      query_example: |
        sum(rate(http_requests_total{status!~"4.."}[5m])) /
        sum(rate(http_requests_total[5m]))
    
    latency:
      measurement: "请求处理时间"
      targets:
        - "P50 < 100ms"
        - "P95 < 300ms"
        - "P99 < 1000ms"
      
      breakdown_analysis:
        - "认证授权时间"
        - "业务逻辑处理"
        - "数据库查询"
        - "外部服务调用"
    
    throughput:
      measurement: "处理能力"
      metrics:
        - "每秒请求数(RPS)"
        - "并发连接数"
        - "队列处理速度"
      
      capacity_planning:
        - "峰值负载测试"
        - "弹性扩展验证"
        - "资源利用率监控"
  
  grpc_service_sli:
    success_rate:
      measurement: "gRPC状态码成功率"
      successful_codes: ["OK"]
      error_codes: ["INTERNAL", "UNAVAILABLE", "DEADLINE_EXCEEDED"]
      
      query_example: |
        sum(rate(grpc_server_handled_total{grpc_code="OK"}[5m])) /
        sum(rate(grpc_server_handled_total[5m]))
    
    latency:
      measurement: "gRPC调用延迟"
      query_example: |
        histogram_quantile(0.95,
          sum(rate(grpc_server_handling_seconds_bucket[5m])) by (le)
        )
yaml
data_processing_sli:
  batch_processing:
    completeness:
      definition: "数据处理完成率"
      formula: |
        completeness = processed_records / total_records * 100
      
      measurement:
        - "ETL作业成功率"
        - "数据质量检查通过率"
        - "端到端处理完成率"
    
    timeliness:
      definition: "数据处理及时性"
      sli_examples:
        - "95%的批处理作业在SLA时间内完成"
        - "数据延迟 < 4小时"
        - "实时流处理延迟 < 1分钟"
    
    accuracy:
      definition: "数据处理准确性"
      validation_checks:
        - "数据格式校验"
        - "业务规则验证"
        - "参照完整性检查"
        - "数据一致性验证"
  
  stream_processing:
    latency:
      end_to_end_latency: "消息产生到消费的总延迟"
      processing_latency: "单个消息处理时间"
      
      measurement_points:
        - "消息队列延迟"
        - "处理器延迟"
        - "输出延迟"
    
    throughput:
      messages_per_second: "每秒处理消息数"
      backlog_size: "待处理消息堆积"
      
      scalability_metrics:
        - "水平扩展效果"
        - "资源利用效率"
        - "负载均衡效果"

错误预算管理

错误预算策略实施
yaml
error_budget_management:
  budget_calculation:
    time_window_based:
      rolling_window:
        description: "滑动时间窗口"
        advantages:
          - "反映近期服务质量"
          - "快速响应质量变化"
          - "平滑历史数据影响"
        
        implementation: |
          # 30天滑动窗口可用性
          availability_30d = (
            sum_over_time(successful_requests[30d]) /
            sum_over_time(total_requests[30d])
          )
          
          error_budget_remaining = 1 - (
            (1 - availability_30d) / (1 - slo_target)
          )
      
      calendar_period:
        description: "日历周期(月/季/年)"
        advantages:
          - "与业务周期对齐"
          - "便于预算规划"
          - "明确重置时间"
        
        use_cases:
          - "财务报告周期"
          - "业务季度评估"
          - "年度规划"
    
    event_based_budget:
      incident_impact:
        calculation: |
          incident_budget_burn = (
            incident_duration * incident_impact_percentage
          ) / total_time_budget
        
        impact_assessment:
          - "影响用户数量"
          - "功能不可用程度"
          - "业务流程中断"
          - "数据丢失风险"
      
      deployment_budget:
        allocation: "为发布和部署预留错误预算"
        strategy:
          - "大版本发布:预留20%预算"
          - "功能更新:预留10%预算"
          - "安全补丁:预留5%预算"
  
  budget_policies:
    burn_rate_thresholds:
      alert_levels:
        - level: "WARNING"
          threshold: "50%预算消耗"
          action: "增加监控频率"
        
        - level: "CRITICAL"
          threshold: "75%预算消耗"
          action: "限制非关键发布"
        
        - level: "EMERGENCY"
          threshold: "90%预算消耗"
          action: "专注可靠性改进"
    
    response_procedures:
      budget_exhausted:
        immediate_actions:
          - "停止所有非紧急部署"
          - "启动可靠性改进模式"
          - "增加监控和告警"
          - "召集可靠性委员会"
        
        recovery_plan:
          - "根因分析和修复"
          - "流程改进措施"
          - "技术债务处理"
          - "预防措施实施"
      
      budget_surplus:
        optimization_opportunities:
          - "加速功能发布"
          - "技术实验和创新"
          - "性能优化项目"
          - "基础设施升级"

error_budget_tooling:
  monitoring_dashboard:
    key_metrics:
      - "当前错误预算余额"
      - "预算消耗速率"
      - "历史预算趋势"
      - "SLO达成状态"
    
    visualization:
      budget_gauge: "预算余额百分比"
      burn_rate_chart: "消耗速率趋势"
      incident_impact: "事件对预算的影响"
      forecast_projection: "预算耗尽预测"
  
  automated_alerting:
    alert_conditions:
      fast_burn: "1小时内消耗5%预算"
      slow_burn: "24小时内消耗20%预算"
      budget_depletion: "预算余额 < 10%"
    
    notification_channels:
      - "即时通讯(Slack/Teams)"
      - "邮件通知"
      - "电话告警(关键情况)"
      - "工单系统集成"
  
  integration_with_cicd:
    deployment_gates:
      pre_deployment_check:
        - "错误预算余额检查"
        - "历史发布成功率"
        - "当前系统健康状态"
      
      post_deployment_monitoring:
        - "发布影响评估"
        - "SLI指标变化监控"
        - "自动回滚触发"
    
    feature_flag_integration:
      budget_aware_rollout:
        - "渐进式功能发布"
        - "基于预算余额调整发布速度"
        - "异常时自动禁用功能"

📈 SLO监控和告警

多层级告警策略

yaml
slo_alerting_framework:
  multi_window_alerting:
    fast_burn_alerts:
      description: "快速错误预算消耗告警"
      time_windows: ["1h", "5m"]
      threshold: "预算消耗速率过快"
      
      prometheus_rule: |
        # 1小时内消耗5%预算
        (
          1 - (
            sum(rate(http_requests_total{status=~"2.."}[1h])) /
            sum(rate(http_requests_total[1h]))
          )
        ) > 14.4 * (1 - 0.999)  # 5% of 30-day budget in 1 hour
      
      response: "立即调查和响应"
    
    slow_burn_alerts:
      description: "缓慢错误预算消耗告警"
      time_windows: ["6h", "30m"]
      threshold: "持续的质量下降"
      
      prometheus_rule: |
        # 6小时内消耗10%预算
        (
          1 - (
            sum(rate(http_requests_total{status=~"2.."}[6h])) /
            sum(rate(http_requests_total[6h]))
          )
        ) > 2.4 * (1 - 0.999)  # 10% of 30-day budget in 6 hours
      
      response: "计划性调查和改进"
  
  contextual_alerting:
    business_context:
      high_impact_periods:
        - "业务高峰期权重加倍"
        - "重要发布期间降低阈值"
        - "节假日期间特殊处理"
      
      user_segmentation:
        - "VIP用户SLO更严格"
        - "地域差异化阈值"
        - "功能模块独立监控"
    
    technical_context:
      deployment_correlation:
        - "发布窗口期放宽阈值"
        - "基础设施维护期间调整"
        - "依赖服务故障时相应调整"
      
      seasonal_patterns:
        - "历史模式学习"
        - "预期负载变化适应"
        - "周期性调整阈值"
yaml
prometheus_slo_rules:
  recording_rules:
    sli_calculations: |
      groups:
      - name: sli_calculations
        interval: 30s
        rules:
        # API可用性SLI
        - record: sli:http_success_rate:5m
          expr: |
            sum(rate(http_requests_total{status=~"[23].."}[5m])) by (service) /
            sum(rate(http_requests_total[5m])) by (service)
        
        # API延迟SLI (P95)
        - record: sli:http_latency_p95:5m
          expr: |
            histogram_quantile(0.95,
              sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service)
            )
        
        # 错误预算消耗速率
        - record: sli:error_budget_burn_rate:1h
          expr: |
            (1 - sli:http_success_rate:1h) / (1 - 0.999)
  
  alerting_rules:
    slo_breach_alerts: |
      groups:
      - name: slo_alerts
        rules:
        # 快速错误预算消耗
        - alert: SLOErrorBudgetFastBurn
          expr: |
            (
              sli:error_budget_burn_rate:1h > 14.4
              and
              sli:error_budget_burn_rate:5m > 14.4
            )
          for: 2m
          labels:
            severity: critical
            slo_type: availability
          annotations:
            summary: "快速错误预算消耗"
            description: |
              服务 {{ $labels.service }} 正在快速消耗错误预算
              当前消耗速率: {{ $value | humanizePercentage }}
              
        # 慢速错误预算消耗
        - alert: SLOErrorBudgetSlowBurn
          expr: |
            (
              sli:error_budget_burn_rate:6h > 2.4
              and
              sli:error_budget_burn_rate:30m > 2.4
            )
          for: 15m
          labels:
            severity: warning
            slo_type: availability
          annotations:
            summary: "错误预算持续消耗"
            description: |
              服务 {{ $labels.service }} 持续消耗错误预算
              6小时消耗速率: {{ $value | humanizePercentage }}
        
        # SLO即将违规
        - alert: SLONearViolation
          expr: |
            sli:error_budget_remaining:30d < 0.1
          for: 5m
          labels:
            severity: warning
            slo_type: availability
          annotations:
            summary: "SLO即将违规"
            description: |
              服务 {{ $labels.service }} 错误预算余额不足10%
              剩余预算: {{ $value | humanizePercentage }}

告警优化和降噪

智能告警策略
yaml
intelligent_alerting:
  alert_correlation:
    multi_signal_analysis:
      correlation_matrix:
        - "SLO violation + Infrastructure metrics"
        - "Error budget burn + Deployment events"
        - "Latency increase + Dependency failures"
        - "Availability drop + Traffic spikes"
      
      correlation_algorithms:
        temporal_correlation:
          method: "时间窗口内事件关联"
          window_size: "5-15 minutes"
          correlation_threshold: 0.8
        
        causal_inference:
          method: "因果关系推断"
          techniques:
            - "Granger causality test"
            - "Pearl causal framework"
            - "Bayesian networks"
    
    root_cause_hints:
      automatic_annotation:
        deployment_events: "Recent deployment detected"
        infrastructure_issues: "High CPU/Memory usage"
        dependency_failures: "Upstream service degradation"
        traffic_anomalies: "Unusual traffic patterns"
      
      investigation_suggestions:
        - "Check recent deployments"
        - "Verify dependency health"
        - "Analyze traffic patterns"
        - "Review error logs"
  
  adaptive_thresholds:
    machine_learning_based:
      anomaly_detection:
        algorithms:
          - "Isolation Forest"
          - "LSTM Neural Networks"
          - "Seasonal Decomposition"
        
        training_data:
          - "Historical SLI values"
          - "Seasonal patterns"
          - "Business calendar events"
          - "Traffic characteristics"
      
      dynamic_adjustment:
        factors:
          - "Historical performance"
          - "Recent trend analysis"
          - "Business context"
          - "External factors"
    
    feedback_loop:
      alert_quality_metrics:
        precision: "True alerts / Total alerts"
        recall: "Detected incidents / Total incidents"
        time_to_detection: "Alert to incident confirmation"
        false_positive_rate: "False alerts / Total alerts"
      
      continuous_improvement:
        - "Weekly alert quality review"
        - "Threshold adjustment based on feedback"
        - "Algorithm performance monitoring"
        - "Stakeholder satisfaction surveys"

alert_fatigue_prevention:
  alert_prioritization:
    severity_matrix:
      critical:
        criteria:
          - "Customer impact: High"
          - "Business impact: Revenue affecting"
          - "Response time: < 5 minutes"
        
        slo_examples:
          - "Payment service unavailable"
          - "User authentication failure"
          - "Data loss incidents"
      
      warning:
        criteria:
          - "Customer impact: Medium"
          - "Business impact: Feature degradation"
          - "Response time: < 30 minutes"
        
        slo_examples:
          - "Slow response times"
          - "Elevated error rates"
          - "Capacity warnings"
      
      info:
        criteria:
          - "Customer impact: Low"
          - "Business impact: Monitoring"
          - "Response time: Next business day"
        
        slo_examples:
          - "SLO trend notifications"
          - "Capacity planning alerts"
          - "Maintenance reminders"
  
  notification_optimization:
    smart_routing:
      escalation_policies:
        - "Primary on-call: 5 minutes"
        - "Secondary on-call: 15 minutes"
        - "Management: 30 minutes"
        - "Executive: 1 hour"
      
      context_aware_routing:
        business_hours: "Different teams for different hours"
        expertise_based: "Route to domain experts"
        load_balancing: "Distribute across available personnel"
    
    consolidation_strategies:
      temporal_grouping:
        - "Group alerts within 5-minute windows"
        - "Suppress duplicate alerts"
        - "Merge related incidents"
      
      logical_grouping:
        - "Service-based grouping"
        - "Infrastructure component grouping"
        - "Business function grouping"

📋 SLI/SLO/SLA 面试重点

基础概念类

  1. SLI、SLO、SLA三者的区别和关系?

    • SLI:可测量的服务质量指标
    • SLO:SLI的目标值和期望范围
    • SLA:正式的服务承诺协议
    • 三者层层递进的关系
  2. 什么是错误预算?如何计算和使用?

    • 定义:SLO允许的最大错误量
    • 计算:(1 - SLO目标) × 总请求数
    • 用途:平衡可靠性和功能发布
    • 政策:预算消耗的响应策略
  3. 如何选择合适的SLI指标?

    • 用户体验导向
    • 客观可测量
    • 业务价值相关
    • 技术可实现

设计实践类

  1. 如何为不同类型服务设计SLO?

    • Web应用:可用性、延迟、吞吐量
    • API服务:成功率、响应时间、限流
    • 数据处理:完整性、及时性、准确性
    • 基础设施:资源可用性、性能指标
  2. SLO目标值如何设定?

    • 基于历史数据分析
    • 考虑用户期望
    • 平衡技术能力
    • 业务价值权衡
  3. 多层级告警策略如何设计?

    • 快速消耗 vs 慢速消耗
    • 多时间窗口监控
    • 上下文感知告警
    • 告警降噪策略

运维管理类

  1. 如何处理SLO违规?

    • 根因分析流程
    • 影响评估方法
    • 改进措施制定
    • 预防策略建立
  2. 错误预算管理的最佳实践?

    • 预算分配策略
    • 消耗监控机制
    • 响应政策制定
    • 与发布流程集成
  3. SLO体系的组织实施?

    • 跨团队协作模式
    • 角色和责任划分
    • 文化和流程建设
    • 持续改进机制

🔗 相关内容


SLI/SLO/SLA体系是现代SRE实践的核心,通过科学化的方法定义、测量和管理服务质量,实现可靠性工程的持续改进和业务价值最大化。

正在精进