Redis 常见数据类型和应用场景
String
String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value 其实不仅是字符串,也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M。
内部实现
String 类型的底层的数据结构实现主要是 int 和 SDS(简单动态字符串)。
之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:
- 因为
SDS使用len属性的值而不是空字符来判断字符串是否结束(所以可以存放\0),并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在buf[]数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。 - C 语言的字符串并不记录自身长度,获取长度的复杂度为 O(n);SDS 用
len属性记录了字符串长度,复杂度为O(1)。 - SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。
字符串对象的内部编码(encoding)有 3 种:int、raw 和 embstr。
如果一个字符串对象保存的是整数值,并且这个整数值可以用long类型来表示,那么字符串对象会将整数值保存在字符串对象结构的ptr属性里面(将void*转换成 long),并将字符串对象的编码设置为int。
如果字符串对象保存的是一个字符串,并且这个字符串的长度小于等于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为embstr, embstr编码是专门用于保存短字符串的一种优化编码方式:
如果字符串对象保存的是一个字符串,并且这个字符串的长度大于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为raw:

可以看到embstr和raw编码都会使用SDS来保存值,但不同之处在于embstr会通过一次内存分配函数来分配一块连续的内存空间来保存redisObject和SDS,而raw编码会通过调用两次内存分配函数来分别分配两块空间来保存redisObject和SDS。Redis 这样做会有很多好处:
embstr编码将创建字符串对象所需的内存分配次数从raw编码的两次降低为一次;- 释放
embstr编码的字符串对象同样只需要调用一次内存释放函数; - 因为
embstr编码的字符串对象的所有数据都保存在一块连续的内存里面可以更好的利用 CPU 缓存提升性能。
但是 embstr 也有缺点的:
- 如果字符串的长度增加需要重新分配内存时,整个 redisObject 和 sds 都需要重新分配空间,所以embstr 编码的字符串对象实际上是只读的,redis 没有为 embstr 编码的字符串对象编写任何相应的修改程序。当我们对 embstr 编码的字符串对象执行任何修改命令(例如 append)时,程序会先将对象的编码从 embstr 转换成 raw,然后再执行修改命令。
- 这也就是raw的有点,可以修改数据
常用指令
普通字符串的基本操作:
点击查看完整代码实现
点击查看完整代码实现
# 设置 key-value 类型的值
> SET name lin
OK
# 根据 key 获得对应的 value
> GET name
"lin"
# 判断某个 key 是否存在
> EXISTS name
(integer) 1
# 返回 key 所储存的字符串值的长度
> STRLEN name
(integer) 3
# 删除某个 key 对应的值
> DEL name
(integer) 1:::
批量设置
计数器(字符串的内容为整数的时候可以使用)
不存在就插入:
# 不存在就插入(not exists)
>SETNX key value
(integer) 1应用场景
缓存对象
使用 String 来缓存对象有两种方式:
- 直接缓存整个对象的 JSON,命令例子:
SET user:1 '{"name":"xiaolin", "age":18}'。 - 采用将 key 进行分离为 user:ID:属性,采用 MSET 存储,用 MGET 获取各属性值,命令例子:
MSET user:1:name xiaolin user:1:age 18 user:2:name xiaomei user:2:age 20。
常规计数
因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。因此 String 数据类型适合计数场景,比如计算访问次数、点赞、转发、库存数量等等。
分布式锁
SET 命令有个 NX 参数可以实现「key 不存在才插入」,可以用它来实现分布式锁:
- 如果 key 不存在,则显示插入成功,可以用来表示加锁成功;
- 如果 key 存在,则会显示插入失败,可以用来表示加锁失败。
一般而言,还会对分布式锁加上过期时间,这是为了避免客户端发生异常而无法释放锁
而解锁的过程就是将 lock_key 键删除,但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。
可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。
共享 会话 信息
通常我们在开发后台管理系统时,会使用 Session 来保存用户的会话 (登录) 状态,这些 Session 信息会被保存在服务器端,但这只适用于单系统应用,如果是分布式系统此模式将不再适用。
- 所以通常使用redis保存登陆的token等信息
List
内部实现;
在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。
应用场景
一般要求顺序的业务中,如消息(由Stream或者mq替代)或者排行榜(由zset替换)
Hash
Hash 是一个键值对(key - value)集合,其中 value 的形式如: value=[{field1,value1},...{fieldN,valueN}]。Hash 特别适合用于存储对象。
内部实现
Hash 类型的底层数据结构是由压缩列表或哈希表实现的:
- 如果哈希类型元素个数小于
512个(默认值,可由hash-max-ziplist-entries配置),所有值小于64字节(默认值,可由hash-max-ziplist-value配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构; - 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
应用场景
缓存对象
Hash 类型的(key,field,value)的结构与对象的(对象 id,属性,值)的结构相似,也可以用来存储对象。
在介绍 String 类型的应用场景时有所介绍,String + Json 也是存储对象的一种方式,那么存储对象时,到底用 String + json 还是用 Hash 呢?
一般对象用 String + Json 存储,对象中某些频繁变化的属性可以考虑抽出来用 Hash 类型存储。
购物车
以用户 id 为 key,商品 id 为 field,商品数量为 value,恰好构成了购物车的 3 个要素
Set
介绍
Set 类型是一个无序并唯一的键值集合,它的存储顺序不会按照插入的先后顺序进行存储。
一个集合最多可以存储 2^32-1 个元素。概念和数学中个的集合基本类似,可以交集,并集,差集等等,所以 Set 类型除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集。
Set 类型和 List 类型的区别如下:
- List 可以存储重复元素,Set 只能存储非重复元素;
- List 是按照元素的先后顺序存储元素的,而 Set 则是无序方式存储元素的。
内部实现
Set 类型的底层数据结构是由哈希表或整数集合实现的:
- 如果集合中的元素都是整数且元素个数小于
512(默认值,set-maxintset-entries配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构; - 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。
应用场景
集合的主要几个特性,无序、不可重复、支持并交差等操作。
因此 Set 类型比较适合用来数据去重和保障数据的唯一性,还可以用来统计多个集合的交集、差集和并集等,当我们存储的数据是无序并且需要去重的情况下,比较适合使用集合类型进行存储。
但是要提醒你一下,这里有一个潜在的风险。Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。
在主从集群中,为了避免主库因为 Set 做聚合计算(交集、差集、并集)时导致主库被阻塞,我们可以选择一个从库完成聚合统计,或者把数据返回给客户端,由客户端来完成聚合统计。
点赞
Set 类型可以保证一个用户只能点一个赞。
共同关注
Set 类型支持交集运算,所以可以用来计算共同关注的好友、公众号等。
抽奖活动
存储某活动中中奖的用户名,Set 类型因为有去重功能,可以保证同一个用户不会中奖两次。
key 为抽奖活动名,value 为员工名称,把所有员工名称放入抽奖箱:
>SADD lucky Tom Jerry John Sean Marry Lindy Sary Mark
(integer) 5如果允许重复中奖,可以使用 SRANDMEMBER 命令。
如果不允许重复中奖,可以使用 SPOP 命令。
Zset
介绍
Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序结合的元素值,一个是排序值。
内部实现
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
应用场景
Zset 类型(Sorted Set,有序集合)可以根据元素的权重来排序,我们可以自己来决定每个元素的权重值。比如说,我们可以根据元素插入 Sorted Set 的时间确定权重值,先插入的元素权重小,后插入的元素权重大。
在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,可以优先考虑使用 Sorted Set。
排行榜
有序集合比较典型的使用场景就是排行榜。例如学生成绩的排名榜、游戏积分排行榜、视频播放排名、电商系统中商品的销量排名等。
比如发表了五篇博文,分别获得赞为 200、40、100、50、150。
电话、姓名排序
使用有序集合的 ZRANGEBYLEX 或 ZREVRANGEBYLEX 可以帮助我们实现电话号码或姓名的排序,我们以 ZRANGEBYLEX (返回指定成员区间内的成员,按 key 正序排列,分数必须相同)为例。
注意:不要在分数不一致的 SortSet 集合中去使用 ZRANGEBYLEX 和 ZREVRANGEBYLEX 指令,因为获取的结果会不准确。
BitMap
Bitmap,即位图,是一串连续的二进制数组(0 和 1),可以通过偏移量(offset)定位元素。BitMap 通过最小的单位 bit 来进行0|1的设置,表示某个元素的值或者状态,时间复杂度为 O(1)。
内部实现
Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。
String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。
常用命令
bitmap 基本操作:
# 设置值,其中value只能是 0 和 1
SETBIT key offset value
# 获取值
GETBIT key offset
# 获取指定范围内值为 1 的个数
# start 和 end 以字节为单位
BITCOUNT key start end应用场景
Bitmap 类型非常适合二值状态统计的场景,这里的二值状态就是指集合元素的取值就只有 0 和 1 两种,在记录海量数据时,Bitmap 能够有效地节省内存空间。
签到统计
在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态。
签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。
判断用户登录态
Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。
只需要一个 key = login_status 表示存储用户登录状态集合数据,将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。50000 万 用户只需要 6 MB 的空间。
连续签到用户总数
key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。
一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。同样的 UserID offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。
HyperLogLog
介绍
Redis HyperLogLog 是 Redis 2.8.9 版本新增的数据类型,是一种用于「统计基数」的数据集合类型,基数统计就是指统计一个集合中不重复的元素个数。但要注意,HyperLogLog 统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。
所以,简单来说 HyperLogLog 提供不精确的去重计数。
HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
内部实现
HyperLogLog 的实现涉及到很多数学问题,太费脑子了,我也没有搞懂,如果你想了解一下,课下可以看看这个:HyperLogLog。
应用场景
百万级网页 UA (User Agent) 计数
Redis HyperLogLog 优势在于只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
所以,非常适合统计百万级以上的网页 UA 的场景。
在统计 UA 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。
PFADD page1:ua user1 user2 user3 user4 user5接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UA 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。
PFCOUNT page1:ua不过,有一点需要你注意一下,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。
这也就意味着,你使用 HyperLogLog 统计的 UA 是 100 万,但实际的 UA 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型。
GEO
Redis GEO 是 Redis 3.2 版本新增的数据类型,主要用于存储地理位置信息,并对存储的信息进行操作。
内部实现
GEO 本身并没有设计新的底层数据结构,而是直接使用了 Sorted Set 集合类型。
GEO 类型使用 GeoHash 编码方法实现了经纬度到 Sorted Set 中元素权重分数的转换,这其中的两个关键机制就是「对二维地图做区间划分」和「对区间进行编码」。一组经纬度落在某个区间后,就用区间的编码值来表示,并把编码值作为 Sorted Set 元素的权重分数。
这样一来,我们就可以把经纬度保存到 Sorted Set 中,利用 Sorted Set 提供的“按权重进行有序范围查找”的特性,实现 LBS 服务中频繁使用的“搜索附近”的需求。
应用场景
滴滴叫车
这里以滴滴叫车的场景为例,介绍下具体如何使用 GEO 命令:GEOADD 和 GEORADIUS 这两个命令。
假设车辆 ID 是 33,经纬度位置是(116.034579,39.030452),我们可以用一个 GEO 集合保存所有车辆的经纬度,集合 key 是 cars:locations。
执行下面的这个命令,就可以把 ID 号为 33 的车辆的当前经纬度位置存入 GEO 集合中:
GEOADD cars:locations 116.034579 39.030452 33当用户想要寻找自己附近的网约车时,LBS 应用就可以使用 GEORADIUS 命令。
例如,LBS 应用执行下面的命令时,Redis 会根据输入的用户的经纬度信息(116.054579,39.030452),查找以这个经纬度为中心的 5 公里内的车辆信息,并返回给 LBS 应用。
GEORADIUS cars:locations 116.054579 39.030452 5 km ASC COUNT 10Stream
支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠。
应用场景
消息队列
一个专业的消息队列,必须要做到两大块:
- 消息不丢。
- 消息可堆积。
1、Redis Stream 消息会丢失吗?
使用一个消息队列,其实就分为三大块:生产者、队列中间件、消费者,所以要保证消息就是保证三个环节都不能丢失数据。

Redis Stream 消息队列能不能保证三个环节都不丢失数据?
- Redis 生产者会不会丢消息?生产者会不会丢消息,取决于生产者对于异常情况的处理是否合理。从消息被生产出来,然后提交给 MQ 的过程中,只要能正常收到(MQ 中间件)的 ack 确认响应,就表示发送成功,所以只要处理好返回值和异常,如果返回异常则进行消息重发,那么这个阶段是不会出现消息丢失的。
- Redis 消费者会不会丢消息?不会,因为 Stream(MQ 中间件)会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,但是未被确认的消息。消费者可以在重启后,用 XPENDING 命令查看已读取、但尚未确认处理完成的消息。等到消费者执行完业务逻辑后,再发送消费确认 XACK 命令,也能保证消息的不丢失。
- Redis 消息中间件会不会丢消息?会,Redis 在以下 2 个场景下,都会导致数据丢失:
- AOF 持久化配置为每秒写盘,但这个写盘过程是异步的,Redis 宕机时会存在数据丢失的可能
- 主从复制也是异步的,主从切换时,也存在丢失数据的可能。
可以看到,Redis 在队列中间件环节无法保证消息不丢。像 RabbitMQ 或 Kafka 这类专业的队列中间件,在使用时是部署一个集群,生产者在发布消息时,队列中间件通常会写「多个节点」,也就是有多个副本,这样一来,即便其中一个节点挂了,也能保证集群的数据不丢失。
2、Redis Stream 消息可堆积吗?
Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。
所以 Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。
当指定队列最大长度时,队列长度超过上限后,旧消息会被删除,只保留固定长度的新消息。这么来看,Stream 在消息积压时,如果指定了最大长度,还是有可能丢失消息的。
但 Kafka、RabbitMQ 专业的消息队列它们的数据都是存储在磁盘上,当消息积压时,无非就是多占用一些磁盘空间。
因此,把 Redis 当作队列来使用时,会面临的 2 个问题:
- Redis 本身可能会丢数据;
- 面对消息挤压,内存资源会紧张;
所以,能不能将 Redis 作为消息队列来使用,关键看你的业务场景:
- 如果你的业务场景足够简单,对于数据丢失不敏感,而且消息积压概率比较小的情况下,把 Redis 当作队列是完全可以的。
- 如果你的业务有海量消息,消息积压的概率比较大,并且不能接受数据丢失,那么还是用专业的消息队列中间件吧。
补充:Redis 发布/订阅机制为什么不可以作为消息队列?
发布订阅机制存在以下缺点,都是跟丢失数据有关:
- 发布/订阅机制没有基于任何数据类型实现,所以不具备「数据持久化」的能力,也就是发布/订阅机制的相关操作,不会写入到 RDB 和 AOF 中,当 Redis 宕机重启,发布/订阅机制的数据也会全部丢失。
- 发布订阅模式是“发后既忘”的工作模式,如果有订阅者离线重连之后不能消费之前的历史消息。
- 当消费端有一定的消息积压时,也就是生产者发送的消息,消费者消费不过来时,如果超过 32M 或者是 60s 内持续保持在 8M 以上,消费端会被强行断开,这个参数是在配置文件中设置的,默认值是
client-output-buffer-limit pubsub 32mb 8mb 60。
所以,发布/订阅机制只适合即时通讯的场景,比如构建哨兵集群的场景采用了发布/订阅机制。
